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Steady, inviscid, axisymmetric vortex flows past a sphere are obtained numerically
as solutions of a partial differential equation for the stream function. The solutions
found include vortex rings, bounded vortices attached to the sphere and infinite
vortex tubes. Four families of attached vortices are described: vortex wakes behind
the sphere, spherically annular vortices surrounding the spherical obstacle (which can
be given analytically), bands of vorticity around the sphere and symmetric pairs of
vortices fore and aft of the sphere. Each attached vortex leads to a one-parameter
family of vortex rings, analogous to the connection between Hill’s spherical vortex
and the vortex rings of Norbury.

1. Introduction
We are concerned here with steady, inviscid, axisymmetric flow past a sphere, the

flow uniform at infinity. We consider flows in which there is a single vortex (or
possibly two symmetrically placed vortices) in equilibrium with the sphere. There
are three distinct types of vortices to be considered: vortex rings, bounded vortices
attached to the sphere, and vortex ‘tubes’ extending to infinity along the axis. In the
course of the paper we will describe several families of each type of vortex.

In general one can expect several families of inviscid vortex flows past a body of
given shape, and can presume that a member of these families can be picked out
using high Reynolds number asymptotics of the steady Navier–Stokes equations. This
problem has been studied extensively, see, for example, Smith (1985), Peregrine (1985),
Chernyshenko (1988) and Chernyshenko & Castro (1993). In the present work we
have fixed ideas by considering only flow past the simplest body, a sphere, and have
made an attempt to find all possible steady, inviscid flows with a single vortex. Apart
from the appeal of knowing the mathematical possibilities, this provides a catalogue
of possible limits, using different boundary conditions, for the steady Navier–Stokes
equations. In addition, the Batchelor model may be a reasonable compromise between
accuracy and simplicity when a vortex is trapped in the vicinity of a body, see
Bunyakin, Chernyshenko & Stepanov (1998).

If we introduce a Stokes’ stream function ψ for the flow,

u =
1

r
ψr, v = −1

r
ψz,

u, v being the components of velocity in the axial and radial directions, then the
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α = 0: attached vortex

α = 0: vortex ring

α = 0: vortex tube

Figure 1. Examples of the three types of vortices obtained. The boundary of the vortex support,
the streamline ψ = α, is shown by a solid line. Other flow lines are dashed. The flow is from left to
right in the far field. ψ = 0 on the axis and the boundary of the sphere. For all three flows ω = 1.
Values of α are 0,−0.6 and 0.47 respectively.

vorticity vector is given by (0,−Lψ/r, 0) in cylindrical coordinates, where

Lψ = r

(
1

r
ψr

)
r

+ ψzz.

We assume that outside the vortex region the flow has velocity U = 1 in the axial
direction (ψ ∼ 1

2
r2) at infinity.

Steady flows result if

Lψ = ωr2f(ψ) (1.1)

for some function f. We will assume that f(ψ) = 1 − H(ψ − α), where H is the
Heaviside function and α is the value of the stream function on the boundary of
the vortex. We have introduced the vortex strength parameter ω > 0 as a factor for
convenience. The vorticity in the vortex region is then (0,−ωr, 0). It should be noted
that flows obtained by solving equation (1.1) generally have only a single vortex
region; if there are multiple regions, the values of both ω and α are the same for all
regions. (In general the functional relationship between vorticity and stream function
in a steady, axisymmetric flow need not be global.) It is also noted that solutions of
(1.1) are continuously differentiable, so there are no vortex sheets.

The meridional plane cross-section of the vortex support for each solution is
{(r, z) : ψ(r, z) < α}. Taking the value of ψ on the surface of the sphere to be 0, the
three classes of vortices – attached, detached (vortex rings), and tubes – correspond
to α being zero, negative and positive respectively. For α < 0, −α is the flux constant:
1/2π times the flux of the flow between the axis and the boundary of the vortex.
Figure 1 shows examples of the three classes of vortices. These examples will be
discussed further in § 3.

For fixed α and ω the partial differential equation (1.1) cannot be expected to have
a unique solution. For α = 0 we have found four distinct one-parameter families
of vortices: vortex wakes behind the sphere (one of which is shown in figure 1),
spherically annular vortices surrounding the sphere (given analytically in § 4), bands
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of vorticity around the circumference of the sphere, and symmetric regions of vortices
fore and aft of the sphere. Vortices in the first family approach the spherical vortex
of Hill (1894) as the size of the vortex region, compared to the sphere, becomes large.
These four families of attached vortices will be discussed further in § 3.

In the case of vortex rings translating in free space, Norbury (1973) has given
a family, parametrized by core radius, which connects Hill’s vortex to thin rings.
We give analogous results for the various attached vortices described above and
stationary vortex rings in equilibrium with the sphere: each attached vortex leads
to a fixed-circulation family of vortex rings, parametrized by the flux constant. In a
somewhat similar fashion, described in § 3, certain attached vortices can be perturbed
to obtain families of vortex tubes.

There is a close analogy between the results presented here and our recent results for
two-dimensional flows past a circular cylinder given in Elcrat et al. (2000). In that work
equilibrium positions for point vortices play an important role: a fixed-circulation
vortex family approaches a point vortex as the flux constant approaches infinity.
However, there is no dynamically valid analogue of a stationary point vortex for
axisymmetric flow: infinitesimal vortex rings propagate with infinite speed (Saffman
1992, p. 36). Kelvin’s formula for a thin vortex ring indicates that the radius of a
vortex ring may be expected to go to infinity as the flux constant goes to infinity, and
this seems to be borne out in our calculations.

In Fornberg (1988) Hill’s spherical vortex arose in the study of solutions of the
steady Navier–Stokes equations for high-Reynolds-number flow past a sphere. A
rapidly convergent Newton’s method was used to avoid naturally occurring instabili-
ties, and a wake, with size growing slowly with Reynolds number, was found which
asymptotes to Hill’s spherical vortex. Those calculations indicate that the first family
of attached vortices obtained here closely approximates high-Reynolds-number vis-
cous wakes. The questions of time stability of the solutions of the Euler equations
obtained here and their relation to solutions of the steady Navier–Stokes equations
are natural ones to raise. However, we do not deal with these questions here.

Steady flows are found here by numerically solving a partial differential equation
for the stream function. We use a non-Newton-based iterative scheme, similar to that
employed in Elcrat et al. (2000). However, there are some important differences in
how the scheme is implemented here compared with that work. In particular, the
differential operator in the present study is not formally self-adjoint, so an alternative
to the fast Fourier transform is required in solving the linear equation at each iterative
step.

2. Numerical procedures
By symmetry we need only consider the upper half of the meridional plane.

Introducing the complex variable q = z + ir, we make the change of variables
ζ = ξ + iη = i ln q. Equation (1.1) then transforms to

L̃ψ = (ωe4η sin2 ξ)f(ψ) (2.1)

where L̃ is the differential operator

L̃ψ = ψξξ + ψηη − (cot ξ)ψ
ξ
− ψ

η
.

If the flow domain is the exterior of a sphere of radius one, we obtain an infinite
strip in the ζ-plane given by −π < ξ < 0, 0 < η < ∞. The boundary condition on
the three sides of the strip is ψ = 0.
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In order to get a finite computational domain we truncate at some larger sphere
of radius R, and this truncates the strip at height lnR. We next describe how we
obtain the boundary condition that we impose on the top of the truncated strip.
Assuming that the vortex is inside a sphere of radius R1 < R, then Lψ = 0 outside
this sphere. Solutions of Lψ = 0 can be expressed as eigenfunction expansions in
terms of basis functions that correspond to spherical harmonics for the velocity
potential, see Batchelor (1967, p. 450). These basis functions are

φ−n :=
1

n+ 1
ρn+1(1− µ2)

dPn(µ)

dµ

and

φn := −1

n

1

ρn
(1− µ2)

dPn(µ)

dµ
,

n > 1, where ρ is the spherical radial coordinate, ρ2 = z2 + r2, µ = z/ρ and Pn is
the Legendre polynomial of order n. Uniform flow at infinity implies that the terms
φ−n, n > 1, do not occur in the expansion. Also, the stream function ψ0 for irrotational
flow past the unit sphere with velocity one at infinity is

ψ0 = 1
2
r2(1− ρ−3) = φ−1 + 1

2
φ1.

In spherical coordinates the basis functions φn, n > 1, satisfy

∂φn

∂ρ
+
n

ρ
φn = 0.

Assuming that we can neglect coefficients of φn for n > 2, we obtain the boundary
condition

∂Ψ

∂ρ
+

2

ρ
Ψ = 0 (2.2)

on the sphere of radius R, where Ψ = ψ−ψ0. (The validity of this assumption can be
checked after the fact by increasing R, and we do this in our computations.) Under
the coordinate transformation this yields the Robin-type boundary condition

∂Ψ

∂η
+ 2Ψ = 0

on the top of the truncated strip.
One can imagine a more sophisticated procedure in which the condition satisfied by

each φn is imposed on a discretization of the equation corresponding to a non-local
condition on ψ. This was done in our previous work on two-dimensional flows, but
did not turn out to be necessary here.

We discretize the problem using a uniform grid on the rectangle

−π 6 ξ 6 0, 0 6 η 6 lnR

in the ζ-plane. Solutions to the nonlinear equation (2.1) are obtained using iterations
to be described below, and the linear equations arising in the iterative procedure are
solved using the multigrid package mudpack, Adams (1989).

There are two parameters, ω and α, in the problem being studied. In Elcrat et al.
(2000) in order to obtain convergence of the iterative procedure we introduced an
additional parameter A, the area of the vortex region, and determined ω as part of the
solution. Constraining the area (or some other geometric measure of the vortex size)
ensures numerical convergence irrespective of any possible physical instabilities. In the
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axisymmetric problem rather than area we use the parameter M, where M =
∫
S
rdA

is the first moment with respect to the axis of symmetry of the cross-section S of
the vortex region in the meridional half-plane. M is used instead of A because the
circulation κ of a vortex in axisymmetric flow is κ = ωM.

Given M and α, the basic iteration we use takes the form

Lψn+1 = ωnr
2f(ψn) (2.3)

where ωn is adjusted in an inner iteration so that the moment of the approximate
vortex region Sn+1 = {ψn+1 < α} is equal to M to within some prescribed tolerance.
(We generally set this tolerance equal to the area of one grid rectangle in the
computational domain.) An initial guess ω0 and an initial guess S0 for the vortex
region are given. The right-hand side of (2.3) in the first iterative step is ω0r

2 on S0

and 0 off S0.
The moment of Sn+1 is computed by adding together the contributions to the

moment of the transformed grid rectangles that intersect Sn+1. If the images of all
four corners of the grid rectangle [ξ1, ξ2]× [η1, η2], are contained in Sn+1 the moment
can be computed exactly: ∫ η2

η1

∫ ξ2

ξ1

(− sin ξ exp(3η))dξdη.

If some but not all corners of a grid rectangle are in Sn+1 then as in Elcrat et al. (2000)
we use linear interpolation on the sides of the rectangle where ψn+1−α changes sign to
approximate the fraction of the area of the grid rectangle that is in Sn+1. That fraction
of the moment of the transformed grid rectangle is then taken as the contribution of
that rectangle to the total moment.

The iterations are continued until the set of grid points in Sn+1 is the same as the
set of grid points in Sn. The inner iterations used to determine ωn are done using the
secant method with stopping criterion |ωn,j+1 − ωn,j | < h2, where h is the mesh width
in the ζ-plane.

3. Results
We will give examples that represent the various solutions we have found. The

graphs which follow show cross-sections of the vortex in the upper half of the
meridional plane. The differential equation (1.1) and the boundary conditions are
invariant under the transformation z → −z , so a non-symmetric vortex always has
a reflected twin. These reflected solutions will not be discussed further. The radius of
the spherical obstacle is taken to be one throughout.

3.1. Attached vortices

For attached vortices α = 0 and M is a parameter. As noted earlier, solutions to
the differential equation (1.1) are not unique. As discussed further in this subsection,
we have in fact found four families of solutions, parametrized by M, when α = 0.
Numerically these different families are obtained by taking different initial guesses
for the vortex region. One of the features of our solution method is that an a priori
‘guess’ as to where a steady vortex might occur can be used as the initial set S0 for
the iterations.

First we have found a set of vortices that have the character of a separation
bubble behind the sphere. These vortices may be thought of as perturbations of Hill’s
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(a) (b)

Figure 2. Streamlines plot for (a) flow past a sphere with an attached vortex with M = 4, ω = 2.2,
and (b) Hill’s spherical vortex of radius 1.85, which has the same value of ω.

Figure 3. Attached (α = 0) trailing vortices.
Values of M are 0.01, 0.1, 0.4, 1, 2, 4, 6, 8, 10, 12, 15 and 20.

Figure 4. Attached vortex bands. Values of M are 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.52, 1.56, 1.8, 2.

spherical vortex. Streamlines for the flow when M = 4 are shown in figure 2 along
with the streamlines for the comparable Hill’s vortex. Numerical solutions for viscous
flow past a sphere obtained previously in Fornberg (1988) suggest that solutions in
this family closely approximate high-Reynolds-number viscous wakes. Solutions in
this family for several values of M are shown in figure 3.

It is noted that to within the computational accuracy of our numerical results (ap-
proximately 2h where h is the grid spacing), each vortex boundary is indistinguishable
from a section of a sphere. While it is to be expected that for large M the vortices
should be nearly spherical, that the boundaries are also apparently spherical even for
small M is perhaps surprising.

For a second family of solutions the boundaries of the converged solutions are
spheres concentric with the spherical obstacle. In fact we will show in § 4 that these
solutions can be given analytically, generalizing Hill’s analytic solution.

A third family of attached vortices is shown in figure 4. For small values of M
the vortex is a small band around the circumference of the sphere, as shown by a
small region at the top of the semicircle in the meridional plane. As M increases the
vortex expands and surrounds the sphere at approximately M = 1.55. As M increases
further the vortex attains an almost spherical shape at approximately M = 2.

For solutions in the fourth family of attached vortices, figure 5, there are two
symmetric regions of vorticity, fore and aft of the sphere. The value of M for
this family ranges from 0 to about 4.65. As M approaches this maximal value the
attachment points in the meridional cross-section approach the top of the semi-circle.
As discussed further in the next subsection, in contrast to the two-dimensional case
we were not able to continue this family to include vortices that completely surround
the obstacle.
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Figure 5. Solutions with two symmetric attached vortex regions.
Values of M are 0.2, 0.5, 1, 2, 3, 4, 4.65.

(a) (b)

Figure 6. Streamline plot for flow with (a) κ = 2 and α = −0.3; and (b) κ = 5 and α = −1.04.

(a) (b)

(c)

Figure 7. Vortex rings trailing the sphere, with (a) κ = 2, values of α are 0, −0.002, −0.02, −0.06,
−0.14, −0.22, −0.30; (b) κ = 5, values of α are 0, −0.1, −0.59, −1.04 and −1.43; (c) κ = 15, values
of α are 0, −0.08, −0.2, −0.6, −1.98, −2.97, −3.98, −5.17, and −6.51.

3.2. Vortex rings

Taking α < 0 yields vortex rings (or detached vortices) as solutions. Norbury (1972)
described a family of steady vortex rings as perturbations of Hill’s spherical vortex and
numerically continued the family to small-cross-section vortices in Norbury (1973).
We can similarly perturb any of the attached vortices described above to obtain
vortex rings.

Streamline plots for two vortex rings are shown in figures 6(a) and 6(b). The shape
of the stagnation streamline in figure 6(b) is quite similar to that shown in figure 4 of
Norbury (1973) for a vortex ring in the full space with a comparable ratio of vortex
core radius to ring radius.

We organize the various vortex rings we have found by presenting fixed-circulation
families of vortex rings, parametrized by α < 0, one such family for each of the
attached vortices described in the previous subsection. Figures 7(a), 7(b) and 7(c)
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Figure 8. Vortex rings perturbed off the concentric spherical attached vortex, with κ = 15.
Values of α are 0,−0.005,−0.03,−0.1,−0.22,−0.36,−0.6,−1,−1.6,−2.4,−3.

Figure 9. Vortex rings perturbed off an attached vortex band, κ = 7.
Values of α are 0,−0.02,−0.1,−0.3,−0.58,−1,−1.58.

Figure 10. Vortex ring pairs, with κ = 8. Values of α go from 0 to −0.43, then increase again to
−0.27 as the vortex regions move toward the vertical axis.

show sequences of vortex rings perturbed from trailing attached vortices for three
values of circulation κ.

The streamline plots shown in figure 6(a, b) are for vortices in figure 7(a, b) respec-
tively. Figures 8, 9 and 10 show sequences of rings associated with one case of each
of the other three types of attached vortex as described in the preceding subsection.

Two algorithms were used to obtain these families. The first is an iterative procedure
that uses the basic algorithm described at the end of § 2 at each iteration. Given α
and M the basic algorithm determines an ω and corresponding solution to (1.1) with
vortex circulation κ(M) = ωM. If κ is prescribed we then use a nonlinear equation
solving routine to vary M so as to solve κ(M) = κ. Note that there are three levels
of iteration with this algorithm and a numerical solution of the partial differential
equation (2.3) is required at each inner step. The second algorithm is much less
computationally intensive: given κ and M (and hence ω) the equation

L̃ψn+1 = (ωe4η sin2 ξ)(1−H)(ψn − αn)
is solved once in each outer iteration. Then α = αn+1 is varied in an inner iteration
to satisfy the constraint on M. Unfortunately the much faster second algorithm was
not successful in locating solutions for α close to 0. Starting from an attached vortex,
as α decreases from 0 with κ fixed the value of M initially increases, then decreases.
The second algorithm only found solutions on the portion of the family where M
decreases. Thus the first algorithm had to be used to find solutions for an initial range
of negative α.

In our previous work on two-dimensional vortices, structure was given to the set of
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Figure 11. Streamline plot for flow with κ = 8 with vortex regions near the end of the family
shown in figure 10. The stagnation points are near the top of the circle.

detached vortices by showing that for an attached vortex (α = 0) there is a stationary
point vortex (α = −∞) (or a symmetric point vortex pair) with the same circulation
κ and a fixed-κ family of detached vortices parametrized by α joining the attached
vortex to the point vortex. There is no analogue of a stationary point vortex for
axisymmetric flow. Figures 7–9 suggest that, for fixed κ, as α decreases the vortex
cross-section eventually assumes a nearly circular shape, bounded away from the axis,
with cross-sectional area decreasing to 0 as α→ −∞. Also Kelvin’s formula (Saffman
1992, p. 195) for a vortex ring

U ∼ κ

4πR

(
ln

(
8R

a

)
− 1

4

)
as a/R → 0, where U = 1 is the propagation speed, R the ring radius, and a the core
radius, indicates that R slowly goes to infinity as α → −∞ with κ fixed, since a → 0
and R is bounded away from 0 as α→ −∞.

It appears likely that starting with any vortex from one of the first three families
of attached vortices, the corresponding fixed-circulation family of vortex rings exists
for the entire range of α < 0. However, as explained in § 3.4, we have encountered
problems of resolution in computing small-cross-section vortices with our algorithm,
these resolution problems increasing as the distance from the ring to the axis increases.
So we were not able to compute solutions for large negative α. We can conjecture
that as α → −∞ the vortices in figure 7(a–c) approach the vertical axis through the
centre of the sphere or eventually merge with the family centred on that axis, but
we cannot take h small enough to conclusively show this. We also note that we are
unable to resolve vortices for which the ratio of core radius to ring radius is so small
as to obtain flows in which there is an interior stagnation point between the vortex
and the axis. (Saffman (1992) indicates that this will occur when the ratio is less than
1/86 in the case of flow without an obstacle.)

For any of the double attached vortices in figure 5 the corresponding family (figure
10) of vortex rings was extended for only a small range of α < 0. An obstruction
to further continuation of the family appears to occur as the stagnation points on
the semi-circle in the meridional half-plane approach the top of the circle (see figure
11). This contrasts with the case of two-dimensional flow where similar flows with
two regions of vorticity can be continued to contain flows in which the ψ = 0
streamline goes above the top of the circle (see figure 12 in Elcrat et al. (2000)). Such
flows have a stagnation point on the vertical axis of symmetry. The axisymmetric
analogue of an interior stagnation point would be an interior stagnation circle. We
have found no steady axisymmetric flows with an interior stagnation circle near the
sphere.
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(a)

(b)

(c)

Figure 12. Vortex tubes, with ω = 1: (a) perturbations of potential flow; (b) perturbations of the
concentric spherical solution; (c) perturbations of a vortex in figure 3. Values of α are 0.1, 0.2, 0.3,
0.4 and 0.5.

3.3. Vortex tubes

Vortices with support extending to infinity along the axis of symmetry occur when
α > 0. Neither circulation nor moment is defined for unbounded vortices, so we use ω
as the second prescribed parameter. As noted earlier, to obtain convergence we must
constrain some geometric measure of the vortex size, and for that purpose we use
area of the vortex in the computational domain in this case. The algorithm used is
the same as the first algorithm described for obtaining vortex rings, with M replaced
by area in the computational domain.

As described below, we have solutions which are perturbations of (a) potential flow,
(b) the concentric spherical vortices and (c) the trailing vortices in figure 3. These
three families are shown in figure 12(a–c) in the case ω = 1. For all three families the
continuation cannot be carried out past a maximal value of α which depends on ω.
As in the case of two-dimensional flow, this maximal value is the same for all three
families (four families counting the reflection of the third family).

For the α = 0 vortex in the family shown in figure 12(b) each streamline ψ = c, c < 0
is a single simple closed curve: the stream function ψ has a unique minimum on the
r-axis. As seen in figure 13 when α = 0.4 the stream function has two minima: there
are two rings of re-circulating fluid within a region of re-circulating fluid surrounding
the sphere. When α = 0.49 the two minima have become further separated and there
are stagnation points on the sphere.

The lower streamline plot in figure 1 is for the α = 0.47 vortex in the family
shown in figure 12(c). As α increases from 0.47 to 0.5 in this family, the region of
recirculating fluid in front of the sphere becomes larger and the region behind the
sphere becomes smaller, so that the maximal α = 0.5 solution is symmetric (with the
same flow pattern as in figure 13b). For perturbations of potential flow, regions of
re-circulating flow fore and aft of the sphere are not visible for α < 0.45 with the
resolution we have used. (See figure 14.) These regions increase rapidly in size as α
increases from 0.48 to 0.5.

Analysis of similar axisymmetric flows in the full space indicates why there is a
maximal value of α given ω. For a full-space axisymmetric flow with vortex tube
{(z, r) : r < r0}, velocity U for r > r0 and velocity ua on the axis, the stream function
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(a)

(b)

Figure 13. Streamline plots for vortices in the family given in figure 12b, for α equal to 0.4 (a) and
(b) 0.49.

Figure 14. Streamline plot for the α = 0.48, ω = 1 perturbation of potential flow.

ψ is given by

ψ =

{
1
2
uar

2 + 1
8
ωr4, ψ < α,

1
2
Ur2 + k, ψ > α,

with ψ = α when r = r0. Differentiability implies U2 − u2
a = 2αω. The value of r0 is

given by ωr2
0 = 2(U − ua). Thus if 2αω < U2 is satisfied there are two such tubes

(ua > 0 and ua < 0). This accounts for two families with the same maximal α (given
ω). In the presence of a sphere the third family (figure 12(c)) arises by matching
a solution from the first family in the far-field upstream with a solution from the
second family in the far-field downstream.

3.4. Computational accuracy

The validity of using the numerical boundary condition (2.2) on the truncating sphere
was checked using a test problem for which an exact solution is known. The error was
at the level of the truncation error of the discretization. The radius of the truncation
sphere was squared from its original value of eπ (the rectangle in the parameter plane
was doubled in height), and the effect was negligible.

Comparison of the numerical results with the analytic formula given in the next
section for the concentric spherical family of solutions provides a check on the
accuracy of the full routine. Generally when the routine converged to one of these
vortices, the boundary of the converged solution agreed with the expected spherical
boundary to within h in the computational domain, where h is the grid spacing.

We have used a rectangle of height π in the computational domain, and h = ∆ξ =
∆η = 2−mπ, with m an integer between 9 and 11. We can make an estimate of the
accuracy of the solutions by noting the extent of variability of the computed solutions
for different initial guesses. Considering the vortices shown in figure 3, the deviation in
the computed points on the vortex boundary among the various computed solutions
for a given M was observed to be at most 2h for M < 15. For 15 < M < 20,
this deviation was at most 3h. Due to the exponential nature of the coordinate
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transformation in the radial direction, the maximum error in the determination of
the vortex boundaries in this family can be taken to be approximately 2hρ for
M < 15 (3hρ for 15 < M < 20), where ρ is the spherical radial coordinate. Converged
solutions were also checked by doubling the number of grid points.

Although the numerical procedure always converges, two kinds of ‘phantom’ solu-
tion were obtained but discarded because the solutions did not remain upon further
grid refinement. First, at a given level of discretization h, we found nearly spherical
downstream vortices with arbitrary centre z on the axis of symmetry for all z > z̄,
where z̄ depends on M and h. However, with greater accuracy the value of z̄ increases,
i.e. the closest such downstream vortex moves further downstream. We conclude that
any such far-downstream standing vortex could be eliminated if the precision were
sufficiently great. Also, for vortex rings with small cross-section the computation
becomes delicate. For fixed h, κ and small M, ‘solutions’ appear centred continuously
along a nearly horizontal curve. When h is decreased however, this indeterminacy can
be resolved. For example, consider the case κ = 5.0 and M = 0.2: the smallest vortex
region shown in figure 7(b). With 29 grid points ‘solutions’ were found in which the
centre of the vortex could be anywhere along a nearly horizontal curve. With 210

grid points this continuum of ‘solutions’ broke into three pieces: the z-coordinate
of the vortex centre varying in the interval [0, 0.12] for the first piece, the interval
[0.85, 1.5] for the second piece and the interval [2.4,∞) for the third piece. With 211

grid points these intervals reduced to [0, 0.02], [1.04, 1.21] and [3.3,∞) respectively. We
conclude that there are actually only two solutions, one with centre on the vertical
axis and one trailing vortex shown in figure 7(b), the third interval giving phantom
solutions as discussed above. We note that the second smallest vortex shown in that
figure is resolved to graphical accuracy with 211 grid points and the next two vor-
tices, M = 0.5 and M = 0.7 are resolved to graphical accuracy with 210 and 29 grid
points respectively. For any level of discretization, there will be similar problems of
resolution if the vortex cross-section is too small or too far from either coordinate
axis. This resolution problem is greater for axisymmetric flow than for the case of
two-dimensional flow.

In comparison to procedures based on Newton’s method, the numerical scheme
used here has gained much in terms of ease of implementation, ease of use, and
higher computational speed. However, although we observe a ‘robust’ linear rate of
convergence to ‘nearby’ solutions in virtually all cases, we have not been able to
demonstrate that convergence is guaranteed in every case when there is a physical
solution near to a numerical guess. Hence, the fact that we have been unable to
numerically connect the solution classes shown in figures 4 and 5 does not rule out
the possibility of there existing a connecting branch of solutions.

4. An analytical solution generalizing Hill’s spherical vortex
There are analogues of Hill’s spherical vortex with a concentric solid spherical

boundary. These were found numerically by our algorithm as discussed in § 3.1. Here
we determine these solutions analytically. Let ρ =

√
r2 + z2 be the spherical radial

coordinate. For any b > 0 and ω > 0 we show that there is an explicit solution of

Lψ =

{
ωr2, b < ρ < a

0, ρ > a

with ψ = 0, on ρ = b, for some uniquely determined a > b. Hill’s vortices are obtained
when b = 0.
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We seek solutions to Lψ = ωr2 of the form ψ = r2f(r2 + z2). This differential
equation is satisfied if

10f′(t) + 4tf′′(t) = ω

for which the general solution is

f(t) = 1
10
ωt+ 2

3
c1t
−3/2 − c2.

Setting ψ = 0 on ρ = a and solving for c2 implies

r−2ψ = 1
10
ω(ρ2 − a2) + 2

3
c1(ρ

−3 − a−3), ρ < a. (4.1)

For irrotational flow past a sphere of radius a with velocity U in the axial direction
at infinity

r−2ψ = 1
2
U(1− a3/ρ3), ρ > a. (4.2)

The tangential velocities match at ρ = a if

U = 2
15
a2ω − 4

3
c1a
−3. (4.3)

(Hill’s vortex is obtained if c1 = 0.) If we now set ψ = 0 when ρ = b in (4.1), solve
for c1 and substitute in (4.3), we obtain

U

ω
=

2

15
a2 − 1

5

b3(a+ b)

(a2 + ab+ b2)
. (4.4)

For fixed b the right-hand side of this equation is strictly increasing in a, vanishes for
a = b and goes to infinity with a. Thus for any positive U and ω there is a unique
a > b for which (4.1) and (4.2) give the solution. Alternatively, if for example a, b and
U are given, ω can be determined by (4.4) to yield a solution given by (4.2) and

r−2ψ =
ω

10

(
(ρ2 − a2) +

a2 − b2

a3 − b3
(ρ−3 − a−3)

)
, b < ρ < a.

The circulation κ = ωM of these vortices has a limiting value of 6Ub as a
approaches b. This follows from (4.4) and the formula M = 2(a3 − b3)/3 for the
moment of the vortex cross-section in the meridional half-plane.

The vortices found in this section complement the ‘Hill’s vortices in a ball’ given
in Appendix B of Amick & Fraenkel (1986); there an outer spherical boundary was
added to Hill’s vortex, whereas here an inner spherical boundary has been added.

5. Conclusions
Euler flows often serve as basic building blocks for the understanding of more

complex flow scenarios. In this study we have provided a collection of simple flows
that significantly extends the known possible solutions of the steady Euler equations
for flow past a spherical body.

Summarizing the flows obtained, we have described vortices attached to the body,
vortex rings and infinite tubes of vorticity. Four families of attached vortices have
been found. Each attached vortex can be perturbed to a fixed-circulation family of
vortex rings parametrized by α < 0 where −α is the flux constant. Some attached
vortices can also be perturbed to α > 0, yielding families of vortex tubes. One family
of attached vortices approximates high-Reynolds-number viscous wakes behind the
sphere. Within the accuracy of our computations the boundaries for this family of
attached vortices appear to be sections of spheres.

These results have much in common with those for two-dimensional flow past a
cylinder in Elcrat et al. (2000), but differ in some ways. In particular, for axisymmetric
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flow there is no direct analogue of a stationary point vortex, and Kelvin’s formula
suggests that as α approaches −∞ the vortex regions become small-cross-section rings
with ring radius approaching infinity. However, the resolution of our computations
does not allow us to obtain small-cross-section rings with large ring radius.

These results can be extended and generalized in several ways.
In Elcrat & Miller (2001) an existence theorem was proven for axisymmetric flows

past a body in a finite channel. The mathematical techniques used there require flow
in a bounded domain. It would be of great interest to adapt those techniques to the
current problem. In another direction, the results in Elcrat & Miller (2001) can be
generalized to flows with swirl, and it seems likely that the computational algorithm
of the present paper can also be generalized to obtain rings with swirl.

The problem of obtaining the solutions obtained here as high-Reynolds-number
limits of the steady Navier–Stokes equations was mentioned in the introduction. For
no-slip boundary conditions, Fornberg (1988) has shown that a properly scaled Hill’s
vortex is the likely asymptotic limit. The question remains, however, if other, perhaps
Reynolds number dependent, boundary conditions might lead to other limits (Saffman
1981). In particular a finite-sized Batchelor-type vortex of the kind computed here
might arise from blowing or suction at the back of the sphere.

Finally the question of stability of our solutions as solutions of the time-dependent
Euler equations deserves study. We can generally expect instability from the work
of Pozrikidis (1986) on Hill’s vortex, but the modes of instability are likely to be
interesting and may be related to the questions raised in the previous paragraph.

REFERENCES

Adams, J. 1989 mudpack: Multigrid Fortran software for the efficient solution of linear elliptic
partial differential equations. Appl. Math. Comput. 34, 113–146.

Amick, C. & Fraenkel, L. 1986 The uniqueness of Hill’s spherical vortex. Arch. Rat. Mech. Anal.
92, 91–119.

Batchelor, G. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bunyakin, A., Chernyshenko, S. & Stepanov, G. 1998 High-Reynolds-number Batchelor-model

asymptotics of a flow past an aerofoil with a vortex trapped in a cavity. J. Fluid Mech. 358,
283–297.

Chernyshenko, S. 1988 The asymptotic form of the stationary separated circumfluence of a body
at high Reynolds number. Appl. Math. Mech. 52, 746 (Prikl. Matem. Mekh. 52, 958–966).

Chernyshenko, S. & Castro, I. 1993 High-Reynolds-number asymptotics of the steady flow
through a row of bluff bodies. J. Fluid Mech. 257, 421–449.

Elcrat, A., Fornberg, B., Horn, M. & Miller, K. 2000 Some steady vortex flows past a circular
cylinder. J. Fluid Mech. 409, 13–27.

Elcrat, A. & Miller, K. 2001 A monotone iteration for concentrated vortices. Nonlinear Analysis
(to appear).

Fornberg, B. 1988 Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190,
471–489.

Hill, M. 1894 On a spherical vortex. Phil. Trans. R. Soc. Lond. A 185, 213–245.
Norbury, J. 1972 A steady vortex ring close to Hill’s spherical vortex. Proc. Camb. Phil. Soc. 72,

253–284.
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57, 417–431.
Peregrine, D. 1985 A note on the steady high-Reynolds-number flow about a circular cylinder.

J. Fluid Mech. 157, 493–500.
Pozrikidis, C. 1986 The nonlinear instability of Hill’s vortex. J. Fluid Mech. 168, 337–367.
Saffman, P. 1981 Dynamics of vorticity. J. Fluid Mech. 106, 49–58.
Saffman, P. 1992 Vortex Dynamics. Cambridge University Press.

Smith, F. T. 1985 A structure for laminar flow past a bluff body at high Reynolds number. J. Fluid
Mech. 155, 179–191.


